and 1-bromooctyne ( $0.945 \mathrm{~g}, 5 \mathrm{mmol}$ ) under a nitrogen atmosphere. The reaction mixture was stirred for 30 min at room temperature, and to the solution were added $(Z)$-1-hexenyldisiamylborane ( 8 mL of a 0.75 M solution in benzene, 6 mmol ) and NaOMe in $\mathrm{MeOH}(7 \mathrm{~mL}$ of a 1 M solution). The reaction mixture was heated under reflux for 2 h and then treated with aqueous NaOH ( 1.8 mL of a 3 M solution) and $\mathrm{H}_{2} \mathrm{O}_{2}$ ( 1.8 mL of a $30 \%$ solution) for 1.5 h at room temperature to remove the unreacted alkenylborane. The product was extracted with hexane and dried over $\mathrm{MgSO}_{4}$. Analysis of the extracts by means of GLC indicated that 2.65 mmol ( $53 \%$ ) of ( $5 Z$ )-tetradec-5-en-7-yne was formed together with $0.13 \mathrm{mmol}(2.6 \%)$ of ( $5 E$ )-enyne. After the removal of the solvent the enyne purified by distillation; bp $86-87^{\circ} \mathrm{C}(1$ torr). An analytically pure sample was obtained by preparative GLC: $\mathrm{n}^{20}{ }_{\mathrm{D}} 1.4620$; IR (neat) $3020,2200,1610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.93(\mathrm{t}, 3 \mathrm{H}), 1.15-1.65(\mathrm{~m}$, $12 \mathrm{H}), 2.05-2.45(\mathrm{~m}, 4 \mathrm{H}), 5.40(\mathrm{~d}, 1 \mathrm{H}, J=11 \mathrm{~Hz}), 5.80(\mathrm{dt}, 1 \mathrm{H}, J$ $=7$ and 11 Hz ); MS, $m / e\left(\mathrm{M}^{+}\right)$192.1880, for $\mathrm{C}_{14} \mathrm{H}_{24}$ obsd calcd 192.1878.

The enynes, prepared by the above procedure using $1 \mathrm{~mol} \%$ of catalyst and $10 \%$ excess of 1 -alkenyldisiamylborane, are as follows.
(5E)-Tetradec-5-en-7-yne: $\mathrm{n}^{20}{ }_{\mathrm{D}} 1.4641$; IR (neat) $3020,2220,955$ $\mathrm{cm}^{-1}$, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.91(\mathrm{t}, 6 \mathrm{H}), 1.11-1.70(\mathrm{~m}, 12 \mathrm{H}), 1.92-2.34$ $(\mathrm{m}, 4 \mathrm{H}), 5.33(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 5.94(\mathrm{dt}, 1 \mathrm{H}, J=6.5$ and 16 Hz$)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24}$ : $\mathrm{C}, 87.42 ; \mathrm{H}, 12.58$. Found: $\mathrm{C}, 87.27 ; \mathrm{H}, 12.59$.
(3E)-1-Phenyloct-3-en-1-yne: $\mathrm{n}^{20}{ }_{\mathrm{D}} 1.5619$; IR (neat) $3020,2200,955$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.93(\mathrm{t}, 3 \mathrm{H}), 1.20-2.05(\mathrm{~m}, 4 \mathrm{H}), 2.15(\mathrm{q}, 2$ H), $5.62(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 6.17(\mathrm{dt}, 1 \mathrm{H}, J=6.5$ and 16 Hz$), 7.24$ (m, 5 H ). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16}: \mathrm{C}, 90.64 ; \mathrm{H}, 9.36$. Found: $\mathrm{C}, 90.47$; H, 9.33.
(3E)-1-Phenylpent-3-en-1-yne: $n^{23}$ 1.5948; IR (neat) 3020, 2215, $955 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.82(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 5.55(\mathrm{~d}, 1 \mathrm{H}$, $J=16 \mathrm{~Hz}), 6.09(\mathrm{dq}, 1 \mathrm{H}, J=6.5$ and 16 Hz$), 7.21(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}, m / e$ $142\left(\mathrm{M}^{+}\right), 117,103,89$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10}: \mathrm{C}, 92.91 ; \mathrm{H}, 7.09$. Found: C, $92.80 ; \mathrm{H}, 7.05$.
(1E)-1-Phenyldec-1-en-3-yne: $\mathrm{n}^{20}{ }_{\mathrm{D}} 1.5643$; IR (neat) $3025,2215,955$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 0.92(\mathrm{t}, 3 \mathrm{H}), 1.16-1.79(\mathrm{~m}, 8 \mathrm{H}), 2.33(\mathrm{~m}, 2$ H), $6.06(\mathrm{dt}, 1 \mathrm{H}, J=2$ and 16 Hz$), 6.90(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 7.28(\mathrm{~m}$, $5 \mathrm{H})$; MS, $m / e 212\left(\mathrm{M}^{+}\right), 183,169,155,141,128,115,91$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20}$ : $\mathrm{C}, 90.50 ; \mathrm{H}, 9.50$. Found: $\mathrm{C}, 90.38 ; \mathrm{H}, 9.47$.

Reaction of 1-Hexenyl-1,3,2-benzodioxaborole with Allylic Compounds (Table VI). In a $25-\mathrm{mL}$ flask was placed a mixture of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.058$ $\mathrm{g}, 0.05 \mathrm{mmol}$ ), ( $E$ )-1-hexenyl-1,3,2-benzodioxaborole $(0.222 \mathrm{~g}, 1.1$ mmol), and allylic compounds ( 1 mmol ) in 5 mL of dry benzene in an atmosphere of nitrogen. After the reaction mixture was heated under reflux for 2 h , the reaction mixture was analyzed directly by GLC on a

SE-30 column by comparison with the authentic sample. ${ }^{27}$ The results are shown in Table VI.

Reaction of 1-Octenylboranes with Palladium Complexes (Table VII). In a $25-\mathrm{mL}$ flask was placed palladium complexes ( 1.0 mmol ) and dry THF under a nitrogen atmosphere. To this solution was added ( $E$ )-1-octenyl-1,3,2-benzodioxaborole ( $0.253 \mathrm{~g}, 1.1 \mathrm{mmol}$ ) or ( $E$ )-1-octenyldisiamylborane ( 1.1 mL of a solution in THF, 1.1 mmol ) dropwise, and the solution was stirred at room temperature. To the solution was then added an appropriate amount of decane in the reaction using the $\pi$-allylpalladium complex or tridecane in the reaction using (trichlorovinyl) palladium complex, and the reaction mixture was analyzed directly by GLC on SE- 30 column. The products were determined by comparison with authentic samples. Preparation of 1,4 -undecadiene had been described elsewhere. ${ }^{55}$ 1,1,2,2-Trichloro-1,3-decadiene was prepared by the following procedure.

In a $50-\mathrm{mL}$ flask was placed $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.104 \mathrm{~g}, 0.09 \mathrm{mmol})$ in benzene $(10 \mathrm{~mL})$, tetrachloroethylene $(0.51 \mathrm{~mL}, 5 \mathrm{mmol}),(E)-1$-octe-nyl-1,3,2-benzodioxaborole ( $0.758 \mathrm{~g}, 3.3 \mathrm{mmol}$ ), and NaOEt in EtOH ( 3 mL of a 2 M solution), and the reaction mixture was heated under reflux for 4 h . To the solution was then added aqueous $\mathrm{NaOH}(4 \mathrm{~mL}$ of a 3 M solution), and the mixture was stirred for 2 h at room temperature. After the usual workup, the diene was extracted with hexane and dried over $\mathrm{MgSO}_{4}$. Distillation of the products gave $0.247 \mathrm{~g}(31 \%)$ of the corresponding diene: bp $142^{\circ} \mathrm{C}$ ( 15 torr). An analytically pure specimen was obtained by preparative GLC: IR (neat) $1725,1635,1550$, $955,125 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.89(\mathrm{t}, 3 \mathrm{H}), 1.10-1.50(\mathrm{~m}, 8 \mathrm{H})$, $1.0-2.4(\mathrm{~m}, 2 \mathrm{H}), 6.27(\mathrm{dt}, 1 \mathrm{H}, J=7$ and 15 Hz$), 6.59(\mathrm{~d}, 1 \mathrm{H}, J=$ 15 Hz ); MS, $m / e\left(\mathrm{M}^{+}\right)$obsd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{Cl}_{3}$ 240.0289, 242.0242, $244.0132,246.0164$, calcd $240.0239,242.0210,244.0178,246.0151$.

Reaction of Lithium 1-Hexenylmethyldisiamylborate with $(E)$ - $\beta$-Styryl Bromide (Equation 13). A dried $25-\mathrm{mL}$ flask was charged with Pd$\left(\mathrm{PPh}_{3}\right)_{4}(0.0578 \mathrm{~g}, 0.05 \mathrm{mmol})$, dry THF ( 2 mL ), and ( $E$ ) $-\beta$-styryl bromide ( $0.183 \mathrm{~g}, 1 \mathrm{mmol}$ ). To this mixture was added lithium l-hexenylmethyldisiamylborate ${ }^{56}$ in THF ( 3 mL of a 0.45 M solution), and the mixture was then refluxed for 3 h . The remaining borane was then oxidized with aqueous NaOH ( 0.5 mL of a 3 M solution) and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ ( 0.5 mL ) for 1 h at room temperature. Analysis of the organic phase by GLC showed the formation of 1-phenyl-1,3-octadiene (9\%) together with small amounts of 1-phenyl-1-propene and 2,3-dimethyl-4-nonene.
(55) Miyaura, N.; Yano, T.; Suzuki, A. Bull. Chem. Soc. Jpn. 1980, 53, 1471-1472.
(56) Miyaura, N.; Itoh, M.; Suzuki, A. Tetrahedron Lett. 1976, 255-258.
(57) McDonald, R. N.; Campbell, T. W. Org. Synth. 1960, 40, 36-38.

# Trifluoroethylidynesulfur Trifluoride, $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$, and Its Dimer 

Brigitte Pötter, ${ }^{* \dagger}$ Konrad Seppelt, ${ }^{\dagger}{ }^{\dagger}$ Arndt Simon, ${ }^{\ddagger}$ Eva-Maria Peters, ${ }^{\ddagger}$ and Bernhard Hettich ${ }^{\ddagger}$<br>Contribution from the Freie Universität Berlin, Institut fuer Anorganische und Analytische Chemie, D-1000 Berlin 33, West Germany, and Max-Planck-Institut fuer Festkoerperforschung, D-7000 Stuttgart 80, West Germany. Received May 3, 1984


#### Abstract

CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}\), the first species with a sulfur-carbon triple bond, has been prepared by dehydrofluorination of $\mathrm{CF}_{3} \mathrm{CH}=\mathrm{SF}_{4}$ or $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{SF}_{5}$. It is a colorless gas with $\mathrm{mp}-122.8^{\circ} \mathrm{C}$ and an estimated $\mathrm{bp}-15^{\circ} \mathrm{C}$. Its molecular structure has been determined by a single-crystal X -ray investigation at $-130^{\circ} \mathrm{C}$ (space group $P 2_{1} ; a=6.298 \AA, b=7.599 \AA, c=5.667 \AA, \beta=105.59^{\circ}$, $Z=2,608$ observed reflections, $R=0.05$ ). The molecule exhibits a very short $C \equiv S$ bond ( $1.394 \AA$ ) and an almost linear $\mathrm{C}-\mathrm{C} \equiv \mathrm{S}$ geometry $\left(171.5^{\circ}\right)$. The triple bond reacts with HF to form the starting materials. On warming up slowly to -30 ${ }^{\circ} \mathrm{C}$ dimerization is observed. The dimer has been analyzed by X-ray crystallography at $-122^{\circ} \mathrm{C}$ (space group $\mathrm{P} 2_{1} / n ; a=$ $12.808 \AA, b=5.612 \AA, c=6.571 \AA, \beta=90.13^{\circ}, Z=2,952$ observed reflections, $R=0.045$ ). The molecule is a butene $\mathrm{CF}_{3}\left(\mathrm{SF}_{3}\right) \mathrm{C}=\mathrm{C}\left(\mathrm{CF}_{3}\right) \mathrm{SF}_{3}$ with trans $(E)$ configuration. This molecule is probably formed when $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ is internally cleaved into a carbene $\mathrm{CF}_{3}-\overline{\mathrm{C}}-\overline{\mathrm{S}} \mathrm{F}_{3}$. NMR data and other physical measurements of these novel materials are given.


## Introduction

$\mathrm{CH}_{2}=\mathrm{SF}_{4}{ }^{1}$ and its derivatives $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{SF}_{4},{ }^{2} \mathrm{CF}_{3} \mathrm{CH}=\mathrm{SF}_{4},{ }^{3}$ and $\mathrm{CF}_{3}\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{SF}_{4}{ }^{3}$ have strong, almost nonpolar carbonsulfur double bonds within a very distinct geometry. ${ }^{4,5}$ Some of these alkylidene sulfur tetrafluorides turned out to be remarkably stable materials. Soon after the discovery of $\mathrm{CH}_{2}=\mathrm{SF}_{4}$ the

[^0]question arose if triple-bonded systems would be capable of existence. Early attempts to generate $\mathrm{HC} \equiv \mathrm{SF}_{3}$ by HF cleavage

[^1]from $\mathrm{CH}_{2}=\mathrm{SF}_{4}$ under various conditions were unsuccessful. The reaction cannot be terminated, and $\mathrm{S}=\mathrm{CF}_{2}$ or its hydrolysis product $\mathrm{S}=\mathrm{C}=\mathrm{O}$ is obtained. Single substitution, as in $\mathrm{CH}_{3} \mathrm{C}$ $\mathrm{H}=\mathrm{SF}_{4}$ and $\mathrm{CF}_{3} \mathrm{CH}=\mathrm{SF}_{4}$, should prevent the second-step HF elimination. From $\mathrm{CF}_{3} \mathrm{CH}=\mathrm{SF}_{4}$ the material $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ has finally been isolated as described in a preliminary communication. ${ }^{6}$ In the meantime ab initio calculations on several $\mathrm{X}-\mathrm{C} \equiv \mathrm{SF}_{3}$ derivatives have been undertaken.?

## Results and Discussion

Chemical Reactions. $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ has been obtained by two slightly different methods, by cleaving HF from $\mathrm{CF}_{3} \mathrm{CH}=\mathrm{SF}_{4}$ and $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{SF}_{5}$ (eq 1). The first reaction has the advantage

of yielding a pure material but the disadvantage of the complicated preparation of the starting material, which takes many steps including an isomer separation ( $\mathrm{CF}_{3} \mathrm{CH}=\mathrm{SF}_{4} / \mathrm{CF}_{2}=\mathrm{CHSF}_{5}$ ). ${ }^{3}$ The opposite is true for the second reaction, both to advantage and disadvantage of the reaction.

The compound $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ is a colorless gas with a melting point of $-122.8^{\circ} \mathrm{C}$ and a boiling point of approximately $-15^{\circ} \mathrm{C}$, rapidly decomposing at this temperature.
Anhydrous HF adds across the triple bond at low temperatures; $\mathrm{CF}_{3} \mathrm{CH}=\mathrm{SF}_{4}$ and finally $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{SF}_{5}$ are formed. Other attempts of addition reactions $\left(\mathrm{HCl}, \mathrm{XeF}_{2}\right.$, inter alia) have not resulted in novel compounds. With $\mathrm{AsF}_{5}$ a solid adduct of still unknown composition is formed.

The above-mentioned decomposition of $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ occurs, though rather slowly, at $-50^{\circ} \mathrm{C}$. At a yield of more than $70 \%$, the dimer is formed as a colorless solid, which decomposes under melting above $-20^{\circ} \mathrm{C}$. The nature of the other, minor decomposition products of $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ has not yet been identified. Again, the dimer is thermally instable. It rapidly decomposes above the melting point, and, when kept at $-30^{\circ} \mathrm{C}$ for prolonged times, $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CCF}_{3}$ is observed as the major product. The results of the crystal-structure investigation of the dimer is somewhat surprising. It turns out to be a 2 -butene derivative $\mathrm{CF}_{3}\left(\mathrm{SF}_{3}\right)$ $\mathrm{C}=\mathrm{C}\left(\mathrm{CF}_{3}\right) \mathrm{SF}_{3}$. Cyclic systems such as

could have been possible alternatives. The 2 -butene structure might have formed by S-S bond cleavage from the ring system as well as the tetrahedron derivative.

We rather assume a nonsymmetric dimerization reaction, according to eq 2 (Figure 3a,b). The formation of a carbene in-


termediate would be a parallel to the intermediate carbene formation in many decomposition reactions of $\mathrm{CH}_{2}=\mathrm{SF}_{4}$.

$$
\mathrm{CH}_{2}=\mathrm{SF}_{4} \rightarrow \mathrm{CH}_{2}+\mathrm{SF}_{4}
$$

The overall decomposition of $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ can be described as a strange case of alkyne metathesis, where the intermediate is now known. The nature of the sulfur-containing products of the re-

[^2]Table 1. Bond Lengths and Bond Angles for $\mathrm{CF}_{3}{\mathrm{C} \equiv \mathrm{SF}_{3}}$ (standard deviations in parentheses)

|  | this work |  | ab initio calculation ${ }^{c}$ |
| :---: | :---: | :---: | :---: |
|  | $a$ | $b$ |  |
| C-S | 1.398 (5) | 1.420 | 1.404 |
| $\mathrm{C}-\mathrm{C}$ | 1.418 (7) | 1.439 | 1.434 |
| S-F(11) | 1.527 (11) | 1.568 | 1.551 |
| S-F (12) | 1.536 (3) | 1.568 | 1.551 |
| S-F(13) | 1.550 (10) | 1.568 | 1.557 |
| S-F(21) | 1.304 (19) | 1.354 | 1.360 |
| S-F(22) | 1.332 (7) | 1.378 | 1.360 |
| S-F (23) | 1.335 (18) | 1.362 | 1.360 |
| C-C-S | 171.5 |  | 179.9 |
| C-S-F(11) | 119.7 |  | 123.3 |
| C-S-F (12) | 124.9 |  | 123.3 |
| C-S-F (13) | 124.6 |  | 123.3 |
| C-S-F (21) | 108.8 |  | 111.9 |
| C-S-F (22) | 111.8 |  | 111.9 |
| C-S-F (23) | 115.6 |  | 111.9 |

${ }^{a}$ Calculated with parameters of Table IV. ${ }^{b}$ Corrected for anisotropic thermal vibrations. ${ }^{c}$ Since the molecule in the crystal has nearly an eclipsed conformation, the calculated values for the eclipsed conformer are given. The values for the staggered conformer are almost identical. ${ }^{\text {. }}$

Table II. Bond Lengths and Bond Angles for

| $\mathrm{CF}_{3}\left(\mathrm{SF}_{3}\right) \mathrm{C}=\mathrm{C}\left(\mathrm{CF}_{3}\right) \mathrm{SF}_{3}$ (standard deviations in parentheses) |  |  |  |
| :--- | :--- | :--- | ---: |
| $\mathrm{S}-\mathrm{C}(1)$ | $1.821(3)$ | $\mathrm{F}(11)-\mathrm{S}-\mathrm{F}(12)$ | $87.2(1)$ |
| $\mathrm{C}-\mathrm{C}(1)$ | $1.319(6)$ | $\mathrm{F}(11)-\mathrm{S}-\mathrm{F}(13)$ | $169.9(1)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.537(5)$ | $\mathrm{F}(12)-\mathrm{S}-\mathrm{F}(13)$ | $88.0(1)$ |
| $\mathrm{C}(2)-\mathrm{F}(21)$ | $1.319(4)$ | $\mathrm{F}(11)-\mathrm{S}-\mathrm{C}(1)$ | $85.9(1)$ |
| $\mathrm{C}(2)-\mathrm{F}(22)$ | $1.333(4)$ | $\mathrm{F}(12)-\mathrm{S}-\mathrm{C}(1)$ | $102.6(1)$ |
| $\mathrm{C}(2)-\mathrm{F}(23)$ | $1.325(4)$ | $\mathrm{F}(13)-\mathrm{S}-\mathrm{C}(1)$ | $86.5(1)$ |
| $\mathrm{S}-\mathrm{F}(11)$ | $1.683(2)$ | $\mathrm{S}-\mathrm{C}(1)-\mathrm{C}(2)$ | $112.7(2)$ |
| $\mathrm{S}-\mathrm{F}(12)$ | $1.554(2)$ | $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}$ | $125.4(4)$ |
| $\mathrm{S}-\mathrm{F}(13)$ | $1.672(2)$ | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{F}(21)$ | $112.0(3)$ |
| $\mathrm{S}-\mathrm{C}(1)-\mathrm{C}$ | $1.219(3)$ | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{F}(22)$ | $111.0(3)$ |
|  |  | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{F}(23)$ | $109.4(3)$ |
|  |  | $\mathrm{F}(21)-\mathrm{C}(2)-\mathrm{F}(22)$ | $107.4(3)$ |
|  |  | $\mathrm{F}(21)-\mathrm{C}(2)-\mathrm{F}(23)$ | $109.7(3)$ |
|  |  | $\mathrm{F}(22)-\mathrm{C}(2)-\mathrm{F}(23)$ | $107.3(3)$ |

action $2 \mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3} \rightarrow 2 \mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CF}_{3}$ remains unknown, however.
The structural characterization of $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ and its dimer presents experimental difficulties, which are only partly due to their low melting temperatures of -122 and $-20^{\circ} \mathrm{C}$, respectively, but mainly due to the thermal instability of both compounds. The usual procedure of in situ crystal growth using a miniaturized Bridgeman technique, ${ }^{8}$ as in the case of $\mathrm{SF}_{4}=\mathrm{CH}_{2},{ }^{5}$ is not possible. But, fortunately, the system offers the possibility to use its chemistry for growing crystals of both the monomer and dimer from one sample. It seems worthwhile to discuss the principle of the experimental approach here, as it should be widely applicable to quite different structural problems.

As crystals of the pure dimer deposit from $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ when it is warmed up, the conclusion can be drawn that the phase relationship between both compounds is of the eutectic type. Such a system allows solution growth for one of the components, which one depending upon the composition of the sample. Following this idea, crystals of $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ are first grown from a sample which contains a small amount of the dimer. Then the dimerization of the sample is performed at elevated temperature, but terminated early enough to yield a concentrated solution of the dimer in $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$. Crystals of the dimer are grown from this solution. It is a fascinating aspect of such a procedure to perform chemical reactions in a capillary and probe the products by sin-gle-crystal techniques.

Crystal Structure. Figure 1 presents stereographic views of the crystallographic unit cells of $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ (a) and $\mathrm{CF}_{3}\left(\mathrm{SF}_{3}\right) \mathrm{C}=$ $\mathrm{C}\left(\mathrm{CF}_{3}\right) \mathrm{SF}_{3}$ (b). The molecular structures are shown in Figure
(8) A. Simon, H.-J. Deiseroth, E. Westerbeck, and B. Hillenkötter, Z. Anorg. Allg. Chem., 423, 203 (1976).


Figure 1. Molecular packing of the molecules in the structure of (a) $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ and (b) $\mathrm{CF}_{3}\left(\mathrm{SF}_{3}\right) \mathrm{C}=\mathrm{C}\left(\mathrm{CF}_{3}\right) \mathrm{SF}_{3}$ viewed down the crystallographic $c$ axes. The $b$ axes are horizontal.
2. Tables I and II summarize bond distances and selected angles. $\mathrm{CF}_{3} \mathbf{C}=\mathbf{S F}_{3}$. In Table I the results of the ab initio calculation are included. According to this calculation of $\mathrm{CF}_{3} \mathrm{C}_{=1} \mathrm{SF}_{3}$ should have a linear $\mathrm{C}-\mathrm{C} \equiv$ frame, a freely rotating $\mathrm{CF}_{3}$ group, a short $\mathrm{C} \equiv \mathrm{S}$ trip bond, but also a shortened $\mathrm{C}-\mathrm{C}$ single bond. The molecule in the crystal deviates only little from these predictions:
(1) All bond lengths are 0.006 to $0.06 \AA$ shorter than predicted. Obviously a correction for vibration would give a better agreement, as can be concluded from the fact that the observed bond lengths of the terminal $\mathrm{C}-\mathrm{F}$ bonds differ the most, the central bonds the least from the calculated values. The bond length calculated in the usual way from the distances of the centers of thermal ellipsoides were therefore recalculated with the aid of ORFFE, ${ }^{9}$ taking into account the anisotropic thermal vibrations of the atoms. Assuming one atom (S) fixed, the vibrations of the others are calculated. As indicated in Table I our corrected bond lengths differ only by 0.002 to $0.015 \AA$ from the ab initio calculated distances.
(2) The $\mathrm{C}-\mathrm{C} \equiv \mathrm{S}$ frame is not completely linear, but an angle of $171.5^{\circ}$ is observed.

It is notable that the ab initio calculation did not predict this small deviation from linearity. In fact, the predicted linear structure of the molecule is in agreement with measurement in solution. The ${ }^{19} \mathrm{~F}$ NMR spectra even at low temeperatures show the fluorine on sulfur and those on carbon, respectively, to be equal. This means virtually free rotation of the $\mathrm{CF}_{3}$ groups and also equilibration of any differences in the SF bonds which would be a result of the slight nonlinearity.

It is commonly known that linear systems of multiple bonds have a very small force constant for bending the system out of linearity. The slight deviation of the molecule from linearity in the crystal structure might therefore be due to packing problems.
(9) W. R. Busing, K. O. Martin, and H. A. Levy, orffe, ORNL-TM-306, Oak Ridge National Laboratory, Oak Ridge, Tenn. 1971.


Figure 2. Molecular structures: (a) $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ and (b) $\mathrm{CF}_{3}\left(\mathrm{SF}_{3}\right) \mathrm{C}=$ $\mathrm{C}\left(\mathrm{CF}_{3}\right) \mathrm{SF}_{3}$. The atoms are represented by thermal ellipsoids at the $50 \%$ probability level.

Analysis of the packing, however, does not substantiate this assumption. The molecules form (rather distorted) close-packed layers in the $a, b$ plane, which are arranged in a stacking sequence according to cubic close packing. The (isolated) molecules show no close interactions with each other. The shortest intermolecular atomic contacts are those between F atoms. They are above 3 $\AA$, i.e., roughly $50 \%$ longer than the intramolecular $\mathrm{F}-\mathrm{F}$ distances and well above the sum of van der Waals radii. It remains to be seen what the structure of the gaseous molecules will be.

Ironically the structure of the first metal carbyne complex $t$-IW $(\mathrm{CO})_{4} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$ resulted in a $\mathrm{W} \equiv \mathrm{C}-\mathrm{C}$ angle of $162(4)^{\circ},{ }^{10}$ whereas later structures of such complexes gave linear systems $\left(t-\mathrm{ICr}(\mathrm{CO})_{4} \equiv \mathrm{CH}_{3}\right) .{ }^{11}$ The first nonionic carbyne complex in the tantalum series, $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{PMe})_{2} \mathrm{ClTa} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$, has a $\mathrm{Ta} \equiv \mathrm{C}$ -- C angle of $171.5(5)^{\circ} .{ }^{12}$ The deviations from linearity in these systems are not all clear.
If it were not for reasons of packing problems, a very small polar (ylidic) character of the triple bond could account for the nonlinearity of the $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ molecule. In a simplified model a full charge on carbon and sulfur should result in a C-C-S angle of $120^{\circ}$. It is noteworthy that the nonlinearity of the molecule

[^3]
a
b


Figure 3. (a) Structure of $\mathrm{CH}_{2}=\mathrm{SF}_{4}$; the double bond is symbolized by two bent single bonds. As predicted, the protons are located in the axial plane; the $\mathrm{F}_{\mathrm{ax}}-\mathrm{S}-\mathrm{F}_{\mathrm{ax}}$ angle (found $170^{\circ}$ ) is close to $180^{\circ}$ and the $\mathrm{F}_{\mathrm{eq}}-\mathrm{S}-\mathrm{F}_{\mathrm{eq}}$ angle (found $96.4^{\circ}$ ) is close to $90^{\circ} 4^{4.5}$ (b) Structure of $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$; the triple bond is symbolized by three bent single bonds, thus giving a linear configuration and $\mathrm{F}-\mathrm{S}-\mathrm{F}$ angles of $90 \%$ (found $90.9-94.3^{\circ}$ ). The small derivation from linearity is explained by allowing a resonance form of the ylidic type. The very short $\mathrm{C}-\mathrm{C}$ bond is explained by allowing a resonance form of another ylidic type commonly called hyperconjugation. The influence of both resonances forms is thought to be small, however.
corresponds to small asymmetries in the bond angles and distances within the $\mathrm{SF}_{3}$ group. This becomes evident from Figure 2a, which shows the molecule with the $\mathrm{C}-\mathrm{C} \equiv \mathrm{S}$ unit in the plane of the drawing together with the values given in Table I. The C-S-F (11) angle involving the in-plane F atom is significantly smaller than the angles involving the out-of-plane F atoms. The $\mathrm{C}-\mathrm{C}-\mathrm{F}$ angles, though at the limits of accuracy, show an opposite behavior.

The $\mathbf{C} \equiv \mathbf{S}$ bond distance ( $1.398 \AA$ ) is even shorter than the bond distance in $\mathrm{N} \equiv \mathrm{SF}_{3}(1.416 \text { (3) } \AA)^{13}$ and significantly shorter than the double bonds in $\mathrm{CS}_{2}(1.559$ (2) $\AA),{ }^{14} \mathrm{~F}_{2} \mathrm{C}=\mathrm{S}\left(1.589\right.$ (10) $\AA \AA^{15}$ $\mathrm{H}_{2} \mathrm{C}=\mathrm{SF}_{4}\left(1.554\right.$ (4) $\AA$ ), ${ }^{4,5}$ and matrix-isolated CS (1.568 (7) $\AA$ ). ${ }^{16}$ It is interesting to calculate the expected distance of a $\mathrm{C}=\mathrm{S}$ triple bond using the bond-length-bond-order concept, ${ }^{17,18}$ which assumes the ratio of bond order $s$ to be an exponential function of bonds lengths $d$. Referring to the single-bond distance $d(1)$ ( $=1.82 \AA$ for the $\mathrm{C}-\mathrm{S}$ bond), the relation is $s=(d / d(1))_{N}$. The exponent is fixed at $\mathrm{N}=4.5$ by introducing the value $d=1.56$ $\AA$ for $s=2 .{ }^{19,20}$ For $s=3 \mathrm{a} \mathrm{C} \equiv \mathrm{S}$ distance $d=1.43 \AA$ is calculated in rather good agreement with the observed value. The description of the $\mathrm{C} \equiv \mathrm{S}$ bond in $\mathrm{CF}_{3} \mathrm{C}=\mathrm{SF}_{3}$ as a true triple bond seems justified. The $\mathrm{F}_{3} \mathrm{C}-\mathrm{C} \equiv$ single bond is also very short ( 1.418 (7) $\AA$ ). It is a well-known effect that single bonds adjacent to multiple bonds are shorter than normal, but the corresponding bonds in $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CCF}_{3}$ are 1.478 (4) $\AA .^{21}$ The remaining discrepancy can be explained by hyperconjunction; see Figure 3b.

In making up a very simple bond model for $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$, it is very important that the bond angles between the fluorine on sulfur are all close to $90^{\circ}$ (as predicted). We therefore suggest a bonding description by three bent single bonds (see Figure 3), in other words, the interconnection of the octahedron of sulfur with the tetrahedron of carbon through a common triangular face. The analogous description has successfully been used for the $\mathrm{C}=\mathrm{S}$ double bond in $\mathrm{CH}_{2}=\mathrm{SF}_{4}$ (see Figure 3a) and may be a physical reality: electron density calculations on the still unknown $\mathrm{FC}=\mathrm{SF}_{3}$ show three distinct maxima $0.396 \AA$ away from the $\mathrm{C}-\mathrm{S}$ axis in

[^4]|  | I | II |
| :---: | :---: | :---: |
| space group | $P 2_{1}$ (no. 4) | $P 2_{1} / n$ (no. 14) |
| $a(\AA)$ | 6.298 (7) | 12.808 (8) |
| $b$ ( $\AA$ ) | 7.599 (8) | 5.612 (2) |
| $c(\AA)$ | 5.667 (7) | 6.571 (4) |
| $\beta$ (deg) | 105.59 (9) | 90.13 (5) |
| $Z$ | 2 | 2 |
| $V\left(\AA^{3}\right)$ | 261.24 | 471.26 |
| $\rho\left(\mathrm{g} \mathrm{cm}^{-3}\right)$ (calcd) | 2.16 | 2.40 |
| no. of observations with intensities $I>2 \sigma(I)$ | 608 | 952 |
| no. of variables | 82 | 82 |
| $R$ | 0.05 | 0.045 |
| $R_{w}$ | 0.052 | 0.045 |

the symmetrical directions staggering the S-F bonds! Unfortunately, from the preciseness of the X-ray analysis of $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ one cannot hope such details to show up in electron density maps. In difference Fourier maps the height of the structure in the region between $S$ and $C$ atom is similar to that in other (irrelevant) parts of the unit cell.

A more sophisticated view has to take into account that the angle $\mathrm{C}-\mathrm{C} \equiv$ S deviates from $180^{\circ}$, which shows a slight reduction of the $\mathrm{C} \equiv \mathrm{S}$ bond order from 3 and, together with the shortened $\mathrm{C}-\mathrm{C}$ distance, a slight increase of the $\mathrm{C}-\mathrm{C}$ bond order. Starting with a linear triple bond situation, a little share of ylidic resonance forms with the negative charge on carbon and (C)-fluorine would explain the nonlinearity and the very short $\mathrm{C}-\mathrm{C}$ bond, respectively (Figure 3b).

A comparison of ${ }^{13} \mathrm{C}$ NMR measurements of the series $\mathrm{CH}_{3}$ $\mathrm{CH}_{2} \mathrm{SF}_{5}, \mathrm{CF}_{3} \mathrm{CH} \equiv \mathrm{SF}_{4}$, and $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ throws some further light on the chemical bonding in the latter molecule. The $\mathrm{CF}_{3}$ group is easily identified and has a rather constant chemical shift; see Table V. The central C atom, which has single, double, and triple bonds, shows the complicated fine structures due to the coupling with protons and different fluorine atoms. But more important, they show a stepwise shift to higher field (higher shielding). This again is an indication for the bond model as described above and in Figure 3. Classical multiple bonds should result in a chemical shift of opposite direction. Also small but increasing polar character of the ylidic type in the sequence $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{SF}_{5}, \mathrm{CF}_{3} \mathrm{C}$ $\mathrm{H}=\mathrm{SF}_{2}$, and $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ could account for this abnormality.
$\mathbf{C F}_{3}\left(\mathbf{S F}_{3}\right) \mathbf{C}=\mathbf{C}\left(\mathbf{C F}_{3}\right) \mathbf{S F}_{3}$ Again the crystal structure is composed of isolated molecules. The 2-butene appears in trans $(E)$ configuration. The $\mathrm{C}=\mathrm{C}$ double bond has a normal distance $(1.311 \AA)$; also the $-\mathrm{CF}_{3}$ configuration is normal. Besides the rather unexpected formation of the molecule discussed earlier, the most remarkable features are the single-bonded $\mathrm{SF}_{3}$ groups.

Table IV. Atomic Coordinates and Isotropic Thermal Parameters (standard deviations in parentheses)

${ }^{a}$ Equivalent isotropic $U$ defined as one-third of the trace of the orthogonalized $U_{i j}$ tensor.
Table V. ${ }^{13} \mathrm{C}$ NMR Data for $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{SF}_{5}, \mathrm{CF}_{3} \mathrm{CH}=\mathrm{SF}_{4}$, and $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ (ppm vs. Me Si , and Hz , respectively) ${ }^{a}$

|  | $\delta_{\mathrm{CF}_{3}}$ | $\delta_{\text {C }}$ | ${ }^{1} J_{C F}$ | ${ }^{1} J_{\mathrm{CH}}$ | ${ }^{2} J_{\text {CCF }}$ | ${ }^{2} J_{\mathrm{CSF}}$ | ${ }^{2} J_{\mathrm{CCH}}$ | ${ }^{3} J_{\text {CCSF }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{SF}_{5}$ | 122.6 | 67.5 | 275.3 | 142.2 | 35.1 | 20.3 e | 6.9 | 4.4 e |
|  |  |  |  |  |  | 1.7 a |  | $<0.5$ a |
| $\mathrm{CF}_{3} \mathrm{CH}=\mathrm{SF}_{4}$ | 121.9 | 55.6 | 265.6 | 192.8 | 9.9 | 42.0 a | 28.4 | $4.9,2 \times \mathrm{a}$ |
|  |  |  |  |  |  | 47.7 a |  | 2.4 e |
|  |  |  |  |  |  | 48.5 e |  |  |
| $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ | 118.2 | 30.4 | 259.1 |  | 11.1 | 61.6 |  | 7.4 |

${ }^{a}$ For ${ }^{19} \mathrm{~F}$ and ${ }^{1} \mathrm{H}$ spectra, see Experimental Section and ref 3. a $=$ axial fluorine atom, $\mathrm{e}=$ equatorial fluorine atom.

They have a typical pseudo-trigonal-bipyramidal configuration with two longer axial SF bonds ( $1.686,1.667 \AA$ ), one shorter equatorial S-F bond ( $1.556 \AA$ ), and an equatorial $\mathrm{S}-\mathrm{C}$ bond.

The equatorially nonbonding electron pair is visible by its repulsion of the other ligands: the $\mathrm{S}\left(\mathrm{F}_{\mathrm{ax}}\right)_{2}$ angle is $170.1^{\circ}$ (instead of $180^{\circ}$ ); the $\mathrm{C}-\mathrm{S}-\mathrm{F}_{e q}$ angle is $102.6^{\circ}$ (instead of $120^{\circ}$ ).

## Experimental Section

General NMR spectra were taken on a JEOL 90 multinuclear instrument; chemical shifts are vs. $\mathrm{Me}_{4} \mathrm{Si}$ and $\mathrm{CFCl}_{3}$, according to IUPAC convention. IR spectra were taken on a Beckmann Acculab 10 instrument, mass spectra on a Varian CH 5 instrument, $70-\mathrm{eV}$ excitation energy.
$\mathrm{CF}_{3} \mathrm{CH}=\mathrm{SF}_{4}{ }^{3}$ and $\mathrm{HOOCCH} \mathrm{SF}_{5}{ }^{22}$ were prepared according to literature methods. $\mathrm{SF}_{4}$ was purchased from Air Products and used without further purification.

2,2,2-Trifluoroethylsulfur Pentafluoride. To $\mathrm{HOOCCH}_{2} \mathrm{SF}_{5}(18.6 \mathrm{~g}$, 0.1 mol ), in a $100-\mathrm{mL}$ stainless steel autoclave, 1 g of water was added. $\mathrm{SF}_{4}(50 \mathrm{~g})$ was condensed into the $-196^{\circ} \mathrm{C}$ cooled autoclave with the help of a glass vacuum line. The autoclave was heated to $110^{\circ} \mathrm{C}$ for 48 h.

The contents of the autoclave was very slowly pumped through 1 L of dilute NaOH solution, and the remaining gases were trapped at -78 ${ }^{\circ} \mathrm{C}$. The mixture of product and $\mathrm{SOF}_{2}$ was distilled with a $30-\mathrm{cm}$ spin-ning-band column to give 15 g of $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{SF}_{5}$ as a colorless, stable liquid ( $68 \%$ ), bp $40^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\delta 5.85 ;{ }^{19} \mathrm{~F}$ NMR $\delta-67.7\left(\mathrm{CF}_{3}\right), 67.6\left(\mathrm{SF}_{3}\right)$, $=73.7\left(\mathrm{SF}_{\mathrm{a}}\right) \mathrm{ppm} ; J_{\mathrm{F}_{\mathrm{a}}-\mathrm{F}_{5}}=152, J_{\mathrm{F}_{\mathrm{s}}-\mathrm{CF}_{3}}=10.1, J_{\mathrm{F}_{\mathrm{e}}-\mathrm{CF}_{3}}=10.1, J_{\mathrm{Fe}-\mathrm{H}}=$ $5.1, J_{\mathrm{CF}_{3}-\mathrm{H}}=10.0 \mathrm{~Hz} ;{ }^{2}{ }^{2} \mathrm{C}$ NMR, see Table V .

The material was shown to be identical with the one described by De Marco and Fox, ${ }^{23}$ so further identification was omitted.

Trifluoroethylidynesulfur Trifluoride. (a) From $\mathbf{C F}_{3} \mathbf{C H}=\mathbf{S F}_{4}$. A $60-\mathrm{cm}$ long Pyrex or quartz tube was filled with powdered KOH. The particle size of the powder should be about 1 mm at the entrance and much finer at the outlet. The tube was thoroughly dried at $100^{\circ} \mathrm{C}$ in vacuo for $0.5-1 \mathrm{~h} . \mathrm{CF}_{3} \mathrm{CH}=\mathrm{SF}_{4}(3 \mathrm{~g})$ was slowly pumped at $55-60^{\circ} \mathrm{C}$ in vacuo through the horizontal tube, and the resulting gases were trapped at $-196^{\circ} \mathrm{C}$. If the starting material $\mathrm{CF}_{3} \mathrm{CH}=\mathrm{SF}_{4}$ was pure, the
(22) G. Kleemann and K. Seppelt, Chem. Ber., 112, 1140 (1979); D. D. Coffman and W. C. Tullock, E. I. du Pont de Nemours \& Co., U. S. Patent 3102903 , 1963.
(23) R. A. De Marco and W. B. Fox, J. Fluorine Chem., 12, 137 (1978).
$\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ was also pure. Otherwise, the impurities $\left(\mathrm{CF}_{2}=\mathrm{CHSF}_{5}\right.$ or hydrocarbons) were found in the product.

The reaction is exothermic, and too rapid dehydrofluorination will result in melting of the $\mathrm{KOH} / \mathrm{KF} / \mathrm{HF}$ solid. The yields varied. In 10 runs the maximum yield was found to be $80 \%$, with a typical yield of about $50 \%$. In one case no product was obtained for unknown reasons. $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ is colorless as gas, liquid, and solid, $\mathrm{mp}-122.8^{\circ} \mathrm{C}$, $\mathrm{bp}-15$ ${ }^{\circ} \mathrm{C}$ (estd): ${ }^{19} \mathrm{~F}$ NMR $\delta 65.7$ [(S)F] $-43.9[(\mathrm{C}) \mathrm{F}] \mathrm{ppm}, J_{\mathrm{F} \cdot \mathrm{F}}=19.5 \mathrm{~Hz}$; ${ }^{13} \mathrm{C}$ NMR, see Table V; IR 1740, 1225, 1168, 862, 795, and $730 \mathrm{~cm}^{-1}$. Mass spectrum: molecular peak at $169.96271,13.2 \%$ (calcd: 169.962 50), and numerous smaller fragments.
(b) From $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{SF}_{5}$. The product was the same as described above, except the best reaction temperature was found to be $75^{\circ} \mathrm{C}$. The main product was $\mathrm{CF}_{2}=\mathrm{CHSF}_{5} ; \mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ amounted only to a few per cent. This product cannot be separated completely from $\mathrm{CF}_{2}=\mathrm{CHSF}_{5}$. The yields are low ( $2-8 \%$ ).

Dimer: $\mathrm{CF}_{3}\left(\mathrm{SF}_{3}\right) \mathrm{C}=\mathrm{C}\left(\mathrm{CF}_{3}\right) \mathrm{SF}_{3}$. A sample of $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ was held at $-30^{\circ} \mathrm{C}$ for 12 h . This procedure was possible with impure samples also. After evaporation of all volatile materials, colorless crystals of the dimer were obtained (about $80 \%$ ). A small amount of $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ always remained as the monomer. The material is purest if freshly prepared, as shown by ${ }^{19}$ F NMR. The material, after being sublimed at -20 ${ }^{\circ} \mathrm{C}$ under high vacuum, showed decreased purity. Melting of the material from -20 to $0^{\circ} \mathrm{C}$ results in partial decomposition.
${ }^{19} \mathrm{~F}$ NMR: Three complicated multiplets at $\delta 75.8\left(\mathrm{SF}_{\mathrm{ax}}\right),-48.1$ $\left(\mathrm{SF}_{\text {eq }}\right)$, and $-51.8\left(\mathrm{CF}_{3}\right),{ }^{2} J_{\mathrm{F}_{\mathrm{ax}}}-\mathrm{F}_{e q}=90 \mathrm{~Hz}$. The mass spectra gave $m / z$ 251 as the highest peak $\left(\mathrm{M}^{+}-\mathrm{SF}_{3}\right)$. On warming to room temperature, or even at $-40^{\circ} \mathrm{C}$, the dimer decomposes to give $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CCF}_{3}$ as the major product, detected by its ${ }^{19} \mathrm{~F}$ NMR spectrum, $\delta-54.9 \mathrm{ppm}$.

Reaction of $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ with HF. $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ was condensed into a $5-\mathrm{mm}$ o.d. FEP NMR tube, and anhydrous HF was added to it on a metal vacuum line. The tube was sealed and kept at $-78^{\circ} \mathrm{C}$. At this temperature no reaction was observed by NMR spectroscopy. At -40 ${ }^{\circ} \mathrm{C}$ the $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ was slowly consumed, $\mathrm{CF}_{3} \mathrm{CH}=\mathrm{SF}_{4}$ was found, and, after some hours, this was converted to $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{SF}_{5}$.

Reaction of $\mathrm{CF}_{3} \mathrm{C}=\mathrm{SF}_{3}$ with HCl . A similar reaction in a glass NMR tube again led to $\mathrm{CF}_{3} \mathrm{CH}=\mathrm{SF}_{4}$ and $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{SF}_{5}$ only, along with some chlorine. Probably some HF is formed from the HCl by decomposition, and HF reacts further as described above.

Reaction of $\mathrm{CF}_{3} \mathrm{C}=\mathrm{SF}_{3}$ with $\mathbf{X e F}_{2}$. In a glass NMR tube a few crystals of $\mathrm{XeF}_{2}$ were dissolved in dry $\mathrm{CFCl}_{3}$ and an equimolar amount of $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ was added by condensation. At $-30^{\circ} \mathrm{C}$ no reaction was observed. Warming to room temperature for a few minutes again yielded
$\mathrm{CF}_{3} \mathrm{CH}=\mathrm{SF}_{4}$ and $\mathrm{CF}_{3} \mathrm{CHSF}_{5}$, probably as a result of HF formation due to a hydrocarbon impurity.

Crystal Growth. An X-ray capillary ( 0.2 mm ) was attached to the trap and after evacuation to $10^{-4}$ torr $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ was evaporated and condensed into the capillary by cooling with liquid nitrogen. In order to guarantee good control of crystal growth, the capillary was thoroughly cleaned with $2 \% \mathrm{HF}$ and detergent in water. Then it was sealed under 1 atm of argon and transferred to the diffractometer in a stream of nitrogen at $-160^{\circ} \mathrm{C}$

Growing of suitable single crystals was performed on a four-circle diffractometer $\mathrm{P} 2_{1}$, which carries a specially designed low-temperature device. ${ }^{24}$
$\mathrm{CF}_{3} \mathrm{C}=\mathrm{SF}_{3}$ (I) The sample, which was partly solid at $-126^{\circ} \mathrm{C}$, was annealed at this temperature for 15 h , yielding several monomer crystals with sizes below 1 mm . At $-124^{\circ} \mathrm{C}$ a few crystals remained suspended in liquid. Their sizes were increased by oscillating the temperature between -124 and $-126^{\circ} \mathrm{C}$ monitoring the diffraction intensity of a suitable reflection. A specimen of approximately 2 mm length oriented along [010] in the capillary axis was chosen for the data collection at $-130^{\circ} \mathrm{C}$. The crystal nearly filled the diameter of the capillary but was still surrounded by some melt and slightly changed its position during the data collection. A further reduction of the temperature was not feasible as the scattering intensity of the polycrystalline eutectic was significant.
$\mathrm{CF}_{3}\left(\mathrm{SF}_{3}\right) \mathrm{C}=\mathbf{C}\left(\mathrm{CF}_{3}\right) \mathrm{SF}_{3}$ (II). After the completion of the data collection for I the sample was warmed, kept at $-20^{\circ} \mathrm{C}$ for approximately 5 min , and cooled to $-133^{\circ} \mathrm{C}$ again. During this cooling process the dimer which had formed first separated in supercooled droplets before crystallizing. At $-80^{\circ} \mathrm{C}$ approximately $50 \%$ of the sample consisted of solid II, besides solution. With the exception of a few crystals all the solid was dissolved again at $-45^{\circ} \mathrm{C}$. The sizes of these crystals were slowly increased by carefully lowering the temperature in steps of $1^{\circ}$ until a suitable needle-shaped crystal of approximately $2-\mathrm{mm}$ length resulted, which again was oriented along [010] in the capillary axis. Data collection was performed at $-122^{\circ} \mathrm{C}$.

Data Collection and Structure Solutions. Measurements were performed with Mo $\mathrm{K} \alpha$ radiation using a graphite monochromator. The lattice constants of I and II resulted from a least-squares refinement of the positions of 15 reflections measured at -130 and $-122^{\circ} \mathrm{C}$, respectively, in the range $8^{\circ} \leqslant 2 \theta \leqslant 28^{\circ}$. Scattering intensities were measured in the $\omega-2 \theta$ scan mode in the range $3^{\circ} \leqslant 2 \theta \leqslant 55^{\circ}$, with a scan width

[^5]of $1^{\circ}$ and equal times for scan and total background measurements. The scan rate varied between 1 and $29 \mathrm{deg} / \mathrm{min}$. The data were corrected for absorption by using the semiempirical $\phi$-scan technique. No further corrections except the usual polarization and Lorentz corrections were applied. The structures were solved by direct methods and refined by least-squares methods using the program system SHELXTL (version 3.0, 1981) on a Data General Eclipse computer. Final full-matrix leastsquares refinements converged to the values of $R=\Sigma \Delta F / \Sigma F_{\mathrm{o}}$ and $R_{w}$ $=\left[\Sigma w(\Delta F)^{2} / w F^{2}\right]$ listed in Table III; the atomic parameters are summarized in Table IV (see paragraph at the end of the paper regarding supplementary material).
$\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}$ (I). Data were collected in the sector $0 \leqslant h \leqslant 8,0 \leqslant k$ $\leqslant 9$, and $-7 \leqslant l \leqslant 7$ resulting in a total of 698 reflections out of which 608 had an intensity $I>2 \sigma(\mathrm{I})$. The only observed systematic absences were $0 k 0$ for $k=2 n+1$, indicating $P 2_{1}$ or $P 2_{\mathrm{I}} / m$, out of which the noncentrosymmetric space group had to be chosen. The atomic positions came out from an $E$-map and were refined to an isotropic value $R=0.16$. Anisotropic refinement led to the final value $R=0.05$.
$\mathrm{CF}_{3}\left(\mathrm{SF}_{3}\right) \mathrm{C}=\mathrm{C}\left(\mathrm{CF}_{3}\right) \mathrm{SF}_{3}$ (II). Diffraction data were collected within the range $0 \leqslant h \leqslant 16,0 \leqslant k \leqslant 7,-8 \leqslant l \leqslant 8$. Out of 1258 measured reflections 952 had intensities larger than $I=2 \sigma(I)$ and were used for solving the phase problem and for refinement. The observed systematic absenses were $h 0 l$ for $h+l=2 n+l$ and $0 k 0$ for $k=2 \mathrm{n}+1$ leading to the space group $P 2_{\mathrm{t}} / n$. All atomic positions came out from an $E$-map and least-squares refinement with isotropic temperature factors led to a reliability factor $R=0.09$. The anisotropic refinement converged to $R$ $=0.045$.

Acknowledgment. The help of Dr. K. Peters and Dr. H.-J. Deiseroth with data collection and computing is gratefully acknowledged. The Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is thanked for financial support of this work.

Registry No. $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{SF}_{5}, 65227-29-4 ; \mathrm{HO}_{2} \mathrm{CCH}_{2} \mathrm{SF}_{5}$, 762-59-4; $\mathrm{SF}_{4}$ 7783-60-0; $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{SF}_{3}, 88476-03-3 ; \mathrm{CF}_{3} \mathrm{CH}=\mathrm{SF}_{4}, 88476-02-2 ; \mathrm{CF}_{2}=$ $\mathrm{CHSF}_{5}, 58636-78-5 ;(E)-\mathrm{CF}_{3} \mathrm{C}\left(\mathrm{SF}_{3}\right)=\mathrm{C}\left(\mathrm{CF}_{3}\right) \mathrm{SF}_{3}, 94203-25-5 ; \mathrm{CF}_{3}-$ $\mathrm{C} \equiv \mathrm{CCF}_{3}, 692-50-2 ; \mathrm{HF}, 7664-39-3 ; \mathrm{HCl}, 7647-01-0 ; \mathrm{XeF}_{2}, 13709-36-9$.
Supplementary Material Available: Tables of structure factors, atomic positional parameters, and anisotropic thermal parameters ( 12 pages). Ordering information is given on any current masthead page.

# Comparative Study of Nucleophilic Addition to Free and Metal-Coordinated Carbocations 

T. J. Alavosus and D. A. Sweigart*<br>Contribution from the Department of Chemistry, Brown University, Providence, Rhode Island 02912. Received September 7, 1984


#### Abstract

A kinetic study in acetone is prepared for phosphorus and nitrogen donor nucleophile addition to three carbocations: ( $p$-(dimethylamino)triphenyl)methyl (1), pyronin (2), and ( $p$-(dimethylamino)phenyl)tropylium (3). In the absence of steric effects, the Ritchie $N_{+}$correlation is obeyed by the reactions; i.e., relative nucleophilic reactivity is electrophile independent. More significantly, the relative reactivities of phosphorus and nitrogen donors toward free carbocations are the same as that observed for addition to metal-coordinated cyclic $\pi$-hydrocarbons even though the latter reactions involve metal-carbon bond cleavage. Both types of reactions have similar transition states.


The addition of nucleophiles to free carbocations is a fundamental reaction in organic chemistry. Ritchie et al. ${ }^{1}$ have shown that oxygen and nitrogen donor nucleophiles add to a wide range of stabilized carbocations according to eq 1 , in which $k$ is the second-order rate constant for the electrophile-nucleophile com-

[^6]bination, $k_{0}$ is the rate constant for a reference nucleophile, and $N_{+}$is a parameter dependent only on the nucleophile and reaction conditions.
\[

$$
\begin{equation*}
\log \left(k / k_{0}\right)=N_{+} \tag{1}
\end{equation*}
$$

\]

This relationship means that relative nucleophilic reactivity is electrophile independent. It follows that selectivity is constant and hence does not correlate with reactivity as would be required


[^0]:    ${ }^{\text {t }}$ Freie Universität Berlin.
    ${ }^{1}$ Max-Planck-Institut fuer Festkoerperforschung.

[^1]:    (1) G. Kleemann and K. Seppelt, Angew. Chem., Int. Ed. Engl., 17, 516 (1978).
    (2) B. Pötter and K. Seppelt, Inorg. Chem. 21, 3147 (1982).
    (3) B. Pötter, G. Kleemann, and K. Seppelt, Chem. Ber., 117, 3255 (1984).
    (4) G. Kleemann and K. Seppelt, Chem. Ber. 116, 645 (1983).
    (5) A. Simon, E.-M. Peters, D. Lentz, and K. Seppelt, Z. Anorg. Allg. Chem., 468, 7 (1980).

[^2]:    (6) B. Pötter and K. Seppelt, Angew. Chem., Int. Ed. Engl., 23, 150 (1984).
    (7) J. E. Boggs, Inorg. Chem., 23, 3577 (1984).

[^3]:    (10) E. O. Fischer, G. Kreis, C. G. Kreiter, J. Müller, G. Huttner, and H. Lorentz, Angew. Chem., Int. Ed. Engl., 12, 564 (1973).
    (11) G. Huttner, H. Lorentz, and W. Gatzke, Angew. Chem., Int. Ed. Engl., 13, 609 (1974).
    (12) M. R. Churchill and W. J. Youngs, Inorg. Chem., 18, 171 (1979).

[^4]:    (13) O. Glemser, Angew. Chem., 75, 679 (1963).
    (14) Y. Morino and T. H. Jijima, Bull. Chem. Soc. Jpn 35, 1661 (1962).
    (15) A. J. Careless, H. W. Kroto, and B. M. Landsby, Chem. Phys., 1, 371 (1973).
    (16) K. H. Huber and G. Hertzberg, "Constants of Diatomic Molecules", Van Nostrand-Reinhold, New York, 1979, p 184.
    (17) I. D. Brown, "The Bond Valence Method: Structure and Bonding in Crystals", Vol. II, Academic Press, New York, 1981.
    (18) O. Slupecki and I. D. Brown, Acta Crystallogr., Sect. B, 38, 1078 (1982).
    (19) The value $N=4.5$ is rather surprising. It is near the value for the multiple bonds between $\mathrm{C}, \mathrm{N}, \mathrm{O}$, and smaller than the value for multiple bonds between elements of the higher periods ${ }^{20}$
    (20) A. Simon, Angew. Chem., 95, 94 (1983); Int. Ed. Engl. 22, 95 (1983).
    (21) C. H. Chang, A. L. Andreassen, and S. H. Bauer, J. Org. Chem. 36, 920 (1971).

[^5]:    (24) A. Simon, Z. Anorg. Allg. Chem., 422, 208 (1976).

[^6]:    (1) Ritchie, C. D.; Kubisty, C.; Ting, G. Y. J. Am. Chem. Soc. 1983, 105, 279 and references therein.

